首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   44篇
  2023年   3篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   11篇
  2016年   10篇
  2015年   23篇
  2014年   12篇
  2013年   29篇
  2012年   43篇
  2011年   31篇
  2010年   26篇
  2009年   18篇
  2008年   24篇
  2007年   32篇
  2006年   38篇
  2005年   23篇
  2004年   21篇
  2003年   18篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有422条查询结果,搜索用时 31 毫秒
91.
Addition of glucose to derepressed cells of the yeast Saccharomyces cerevisiae induces a transient, specific cAMP signal. Intracellular acidification in these cells, as caused by addition of protonophores like 2,4-dinitrophenol (DNP) causes a large, lasting increase in the cAMP level. The effect of glucose and DNP was investigated in glucose-repressed wild type cells and in cells of two mutants which are deficient in derepression of glucose-repressible proteins, cat1 and cat3. Addition of glucose to cells of the cat3 mutant caused a transient increase in the cAMP level whereas cells of the cat1 mutant and in most cases also repressed wild type cells did not respond to glucose addition with a cAMP increase. The glucose-induced cAMP increase in cat3 cells and the cAMP increase occasionally present in repressed wild type cells however could be prevented completely by addition of a very low level of glucose in advance. In derepressed wild type cells this does not prevent the specific glucose-induced cAMP signal at all. These results indicate that repressed cells do not show a true glucose-induced cAMP signal. When DNP was added to glucose-repressed wild type cells or to cells of the cat1 and cat3 mutants no cAMP increase was observed. Addition of a very low level of glucose before the DNP restored the cAMP increase which points to lack of ATP as the cause for the absence of the DNP effect. These data show that intracellular acidification is able to enhance the cAMP level in repressed cells. The glucose-induced artefactual increase occasionally observed in repressed cells is probably caused by the fact that their low intracellular pH is only restored after the ATP level has increased to such an extent that it is no longer limiting for cAMP synthesis. It is unclear why the artefactual increases are not always observed. Measurement of glucose- and DNP-induced activation of trehalase confirmed the physiological validity of the changes observed in the cAMP level. Our results are consistent with the idea that the glucose-induced signaling pathway contains a glucose-repressible protein and that the protein is located before the point where intracellular acidification triggers activation of the pathway.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DNP 2,4-dinitrophenol - Mes 4-morpholineethanesulfonic acid  相似文献   
92.
93.
94.
95.
Emotion significantly strengthens the subjective recollective experience even when objective accuracy of the memory is not improved. Here, we examine if this modulation is related to the effect of emotion on hippocampal-dependent memory consolidation. Two critical predictions follow from this hypothesis. First, since consolidation is assumed to take time, the enhancement in the recollective experience for emotional compared to neutral memories should become more apparent following a delay. Second, if the emotion advantage is critically dependent on the hippocampus, then the effects should be reduced in amnesic patients with hippocampal damage. To test these predictions we examined the recollective experience for emotional and neutral photos at two retention intervals (Experiment 1), and in amnesics and controls (Experiment 2). Emotional memories were associated with an enhancement in the recollective experience that was greatest after a delay, whereas familiarity was not influenced by emotion. In amnesics with hippocampal damage the emotion effect on recollective experience was reduced. Surprisingly, however, these patients still showed a general memory advantage for emotional compared to neutral items, but this effect was manifest primarily as a facilitation of familiarity. The results support the consolidation hypothesis of recollective experience, but suggest that the effects of emotion on episodic memory are not exclusively hippocampally mediated. Rather, emotion may enhance recognition by facilitating familiarity when recollection is impaired due to hippocampal damage.  相似文献   
96.
DNA binding as well as ligand binding by nuclear receptors has been studied extensively. Both binding functions are attributed to isolated domains of which the structure is known. The crystal structure of a complete receptor in complex with its ligand and DNA-response element, however, has been solved only for the peroxisome proliferator-activated receptor γ (PPARγ)-retinoid X receptor α (RXRα) heterodimer. This structure provided the first indication of direct interactions between the DNA-binding domain (DBD) and ligand-binding domain (LBD). In this study, we investigated whether there is a similar interface between the DNA- and ligand-binding domains for the androgen receptor (AR). Despite the structural differences between the AR- and PPARγ-LBD, a combination of in silico modeling and docking pointed out a putative interface between AR-DBD and AR-LBD. The surfaces were subjected to a point mutation analysis, which was inspired by known AR mutations described in androgen insensitivity syndromes and prostate cancer. Surprisingly, AR-LBD mutations D695N, R710A, F754S, and P766A induced a decrease in DNA binding but left ligand binding unaffected, while the DBD-residing mutations K590A, K592A, and E621A lowered the ligand-binding but not the DNA-binding affinity. We therefore propose that these residues are involved in allosteric communications between the AR-DBD and AR-LBD.  相似文献   
97.
98.
99.
Campylobacter jejuni is one of the most important causes of human diarrhea worldwide. In the present work, multilocus sequence typing was used to study the genotypic diversity of 145 C. jejuni isolates from 135 chicken meat preparations sampled across Belgium. Isolates were further typed by pulsed-field gel electrophoresis, and their susceptibilities to six antimicrobials were determined. Fifty-seven sequence types (STs) were identified; 26.8% of the total typed isolates were ST-50, ST-45, or ST-257, belonging to clonal complex CC-21, CC-45, or CC-257, respectively. One clonal group comprised 22% (32/145) of all isolates, originating from five different companies and isolated over seven sampling months. Additionally, 53.1% of C. jejuni isolates were resistant to ciprofloxacin, and 48.2% were resistant to tetracycline; 28.9% (42/145) of all isolates were resistant to both ciprofloxacin and tetracycline. The correlation between certain C. jejuni clonal groups and resistance to ciprofloxacin and tetracycline was notable. C. jejuni isolates assigned to CC-21 (n = 35) were frequently resistant to ciprofloxacin (65.7%) and tetracycline (40%); however, 90% (18/20) of the isolates assigned to CC-45 were pansusceptible. The present study demonstrates that certain C. jejuni genotypes recur frequently in the chicken meat supply. The results of molecular typing, combined with data on sample sources, indicate a possible dissemination of C. jejuni clones with high resistance to ciprofloxacin and/or tetracycline. Whether certain clonal groups are common in the environment and repeatedly infect Belgian broiler flocks or whether they have the potential to persist on farms or in slaughterhouses needs further investigation.Campylobacter jejuni is among the most common bacterial causes of human gastroenteritis worldwide (4, 23). Infected humans exhibit a range of clinical symptoms from mild, watery diarrhea to severe inflammatory diarrhea (14). In addition, C. jejuni has been identified as an important infectious trigger for Guillain-Barré syndrome, the most common cause of acute flaccid paralysis in polio-free regions (16). Another issue of concern regarding Campylobacter is the increase in antimicrobial resistance appearing in various regions around the world (1). Infection with an antimicrobial-resistant Campylobacter strain may lead to a suboptimal outcome of antimicrobial treatment or even to treatment failure (11).Consumption of contaminated water and raw milk has been implicated in campylobacteriosis outbreaks (23). However, the majority of human cases are sporadic, and consumption or mishandling of contaminated raw or undercooked poultry meat is believed to be an important source of infection. Risk assessment studies, outbreak investigations, and case-control reports all incriminate chicken meat as a major source, perhaps the major source, of food-borne transmission (14, 17, 32, 48). In Belgium in 1999, a controlled withdrawal of poultry products from sale due to alleged dioxin contamination resulted in a 40% reduction in the frequency of human campylobacteriosis (44). Thereafter and since the year 2000, the Campylobacter contamination of Belgian poultry carcasses and meat has been monitored by the Federal Agency for the Safety of the Food Chain, and the rate of positive samples is regarded as high. In 2006, 55.5% of cecal samples (n = 6,443) from Belgian broilers at slaughter tested positive for Campylobacter (3). In 2007, an industry-focused survey reported that 48% of Belgian chicken meat preparations (n = 656) were contaminated with Campylobacter (19).Molecular typing is an important tool in elucidating the diversity and transmission routes of Campylobacter isolates contaminating the food chain. In the United States, molecular analysis of Campylobacter spp. from poultry production and processing environments showed that many of the clones found within a flock are present in the final products, although the diversity of Campylobacter isolates in the final product was lower than that observed in the flock (22). Furthermore, numerous molecular epidemiological studies indicate that the genotypes of C. jejuni isolated from human cases overlap those of poultry origin (17, 47). Various molecular typing methods for the study of the population structure of Campylobacter are currently available (46). Among these, the multilocus sequence typing (MLST) approach is an emerging tool for research on the population structure and molecular epidemiology of Campylobacter. The technique is highly reproducible, portable, and easy to interpret, and results can be shared through a publicly accessible online database (31, 34). As such, MLST is becoming an important tool for studying the molecular epidemiology of Campylobacter in a global context. The accumulation of sequence typing data generated from different countries and settings could allow the creation of more-sophisticated models of the epidemiology and evolution of bacterial pathogens and the development of improved approaches for combating their spread (41).In Belgium, there is a paucity of information regarding the population structure of Campylobacter in the chicken meat supply. No population-based surveys have been conducted to investigate the molecular epidemiology of C. jejuni in chicken meat at points close to human consumption. In this study, MLST and pulsed-field gel electrophoresis (PFGE) were used to characterize the diversity of, and clonal relationships among, 145 C. jejuni isolates from Belgian chicken meat preparations. In addition, we characterized the antimicrobial resistance in this collection and correlated it with C. jejuni genotypes.  相似文献   
100.
In plant cells, Golgi vesicles are transported to the division plane to fuse with each other, forming the cell plate, the initial membrane-bordered cell wall separating daughter cells. Vesicles, but not organelles, move through the phragmoplast, which consists of two opposing cylinders of microtubules and actin filaments, interlaced with endoplasmic reticulum membrane. To study physical aspects of this transport/inhibition process, we microinjected fluorescent synthetic 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol (DOPG) vesicles and polystyrene beads into Tradescantia virginiana stamen hair cells. The phragmoplast was nonselective for DOPG vesicles of a size up to 150 nm in diameter but was a physical barrier for polystyrene beads having a diameter of 20 and 40 nm and also when beads were coated with the same DOPG membrane. We conclude that stiffness is a parameter for vesicle transit through the phragmoplast and discuss that cytoskeleton configurations can physically block such transit.Cells and their constituents are physical entities, and next to chemical interactions, cell structures are determinants of cell behavior. Therefore, apart from techniques to image living cells at the subcellular level, experiments are needed that probe physical parameters important in cell function in vivo. We took the plant phragmoplast structure to answer the question whether the physical aspect “stiffness” is a factor in the inhibition of transport through this structure by microinjecting synthetic vesicles and polystyrene beads in Tradescantia virginiana stamen hair cells during cytokinesis, when the phragmoplast is essential for partitioning the cytoplasm between two daughter cells. Plant cells partition by producing a cell plate made of fused 60- to 80-nm-diameter vesicles (Staehelin and Hepler, 1996; Jürgens, 2005) proven to be Golgi vesicles (Reichardt et al., 2007). Their content becomes the new cell wall and their membranes become the daughter cell plasma membranes. The phragmoplast consists of two opposing cylinders of microtubules and actin filaments, interlaced with similarly aligned endoplasmic reticulum (ER) membranes. This phragmoplast cytoskeleton is the transport vehicle for Golgi vesicles to the plane where the cell plate is being formed (Staehelin and Hepler, 1996; Valster et al., 1997), keeps them in this plane (Esseling-Ozdoba et al., 2008b), where they fuse with each other (Samuels et al., 1995; Otegui et al., 2001; Seguí-Simarro et al., 2004), and assists in the proper attachment of the cell plate to the parental cell wall (Valster et al., 1997; Molchan et al., 2002). Transit of organelles, including Golgi bodies, is inhibited (Staehelin and Hepler, 1996; Nebenführ et al., 2000; Seguí-Simarro et al., 2004). Most of these data are known from static electron microscopy images. Electron microscopy after high-pressure freezing and freeze substitution (Thijsen et al., 1998) and electron tomography studies (Otegui et al., 2001; Seguí-Simarro et al., 2004; Austin et al., 2005) show that, in the early stage of cell plate formation in the center and later at the phragmoplast border, microtubules are aligned parallel to each other at distances of 20 to 100 nm. Keeping in mind that also actin filaments and ER membranes, aligned in the same orientation, are present between the microtubules, this leaves little room for the cell plate-forming vesicles during their transport through this phragmoplast.Clearly, during the past decade, significant progress has been made in the elucidation of the structural organization of cell plate-forming phragmoplasts, which has set the stage for studies to elucidate physical properties of phragmoplasts. The experimental approach we use is injecting particulate and vesicular fluorescent probes into living and dividing cells and observing the extent to which such probes can enter the phragmoplast and can be transported to the cell plate region. We have shown before that synthetic lipid 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol (DOPG) vesicles of 60 nm diameter are transported through the phragmoplast, accumulate, and are kept in the cell plate region but do not fuse (Esseling-Ozdoba et al., 2008b). Now, we asked whether similar, flexible, synthetic lipid (DOPG) vesicles of various sizes, smaller and larger than endogenous vesicles, as well as stiff polystyrene beads, and such beads coated with the DOPG membrane, are transported through the phragmoplast and enter the plane where the cell plate is being formed, a question pertaining to a physical property of the phragmoplast. Our principal finding is that injected synthetic vesicles up to 150 nm diameter can enter and be transported to the cell plate region, where they accumulate but do not become incorporated into the cell plate. In contrast, polystyrene beads, the noncoated ones and those coated with the same lipid as the vesicles with diameters of 20 and 40 nm, can enter phragmoplasts but cannot be transported to the cell plate region, and the 40-nm beads slow cell plate formation, possibly by interfering with the delivery of normal, cell plate-forming vesicles to the cell plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号